
Evolutionary Multiobjective Design
targeting a Field Programmable Transistor Array

Arturo Hernández Aguirre
Center for Research in Mathematics

Guanajuato, 36240, México
artha@cimat.mx

Ricardo S. Zebulum
Jet Propulsion Laboratory
Pasadena, CA 91109 USA

ricardo.s.zebulum@jpl.nasa.gov

Carlos Coello Coello
CINVESTAV-IPN, EE Section
México, D.F. 07300 México

ccoello@cs.cinvestav.mx

Abstract- This paper introduces the ISPAES algorithm
for circuit design targeting a Field Programmable Tran-
sistor Array (FPTA). The use of evolutionary algorithms
is common in circuit design problems, where a single fit-
ness function drives the evolution process. Frequently,
the design problem is subject to several goals or oper-
ating constraints, thus, designing a suitable fitness func-
tion catching all requirements becomes an issue. Such
a problem is amenable for multi-objective optimiza-
tion, however, evolutionary algorithms lack an inherent
mechanism for constraint handling. This paper intro-
duces ISPAES, an evolutionary optimization algorithm
enhanced with a constraint handling technique. Several
design problems targeting a FPTA show the potential of
our approach.

1 Introduction

The success of Evolutionary Algorithms (EAs) in global op-
timization has triggered a considerable amount of research
whose goal is a mechanisms to handle constraints [8]. So
far, the most common approach adopted in the evolution-
ary optimization literature to deal with constrained search
spaces is the use of penalty functions [11]. Despite the pop-
ularity of penalty functions, they have several drawbacks
from which the main one is that they require a careful fine
tuning of the penalty factors that indicates the degree of pe-
nalization to be applied [12].

Recently, some researchers have suggested the use of
multiobjective optimization concepts to handle constraints
in EAs. This paper introduces a new approach that is based
on an evolution strategy that was originally proposed for
multiobjective optimization: the Pareto Archived Evolution
Strategy (PAES) [7]. ISPAES (Inverted Shrinkable PAES)
can be used to handle constraints in single-objective opti-
mization problems and does not present the scalability prob-
lems of the original PAES. Besides using Pareto-based se-
lection, our approach uses a secondary population (one of
the most common notions of elitism in evolutionary multi-
objective optimization), and a mechanism that reduces the
constrained search space so that our technique can approach
a optimum more efficiently.

Evolvable hardware researchers apply EAs in circuit de-
sign, usually in a highly dimensional search space, where
building a solution is more promissory than deriving it from
the premises. The common approach can be defined as
global optimization, that is, the objective function is rep-
resented by the fitness function, and no problem constraints

are present. In some problems, a simple form of constraint
handling (for instance penalty functions), is applied to the
population in order to deal with constrained search spaces.

In this paper, the ISPAES algorithm is applied to circuit
design over a Field Programmable Transistor Array model.
The FPTA transistor model and circuit description was fed
into the SPICE simulator for all experiments, so “extrinsic
evolution” was used. Experiments using the real FPTA de-
vice have been reported by Adrian Stoica et al. [13, 14].
His technique, however, is driven by the optimization of the
sole fitness function.

2 Problem Statement

We are interested in the general non-linear programming
problem in which we want to:

Find x which optimizes F(x) (1)

subject to:

gi(x) ≤ 0, i = 1, . . . , n (2)

hj(x) = 0, j = 1, . . . , p (3)

where F is the vector of objective function values F =
[f1(x), . . . , fk(x)], x is the vector of solutions x =
[x1, x2, . . . , xr]T , n is the number of inequality constraints
and p is the number of equality constraints (in both cases,
constraints could be linear or non-linear).

If we denote the feasible region with F and the entire
search space with S, then obviously F ⊆ S.

For an inequality constraint that satisfies gi(x) = 0, then
we will say that it is active at x. All equality constraints hj

(regardless of the value of x) are considered to be active at
all points of F .

An optimality criteria has to be defined for the multi-
objective problems since decisions of the type what is the
best solution? must be taken over the population individu-
als. Pareto dominance is that criteria; we say one individual
dominates a second individual if the first is better in at least
one of the objectives while the other objectives remain with
no change (a�b means a dominates b).

3 Basic Concepts

A multiobjective optimization problem (MOP) has the fol-
lowing the form:

Minimize [f1(�x), f2(�x), . . . , fk(�x)] (4)

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

subject to the m inequality constraints:

gi(�x) ≥ 0 i = 1, 2, . . . , m (5)

and the p equality constraints:

hi(�x) = 0 i = 1, 2, . . . , p (6)

where k is the number of objective functions fi : Rn →
R. We call �x = [x1, x2, . . . , xn]T the vector of decision
variables. We wish to determine from among the set F of all
vectors which satisfy (5) and (6) the particular set of values
x∗

1, x
∗
2, . . . , x

∗
n which yield the optimum values of all the

objective functions.

3.1 Pareto Optimality

A vector �u = (u1, . . . , uk) is said to dominate �v =
(v1, . . . , vk) (denoted by �u � �v) if and only if u is par-
tially less than v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈
{1, . . . , k} : ui < vi. For a given multiobjective optimiza-
tion problem, �f(x), the Pareto optimal set (P∗) is defined
as:

P∗ := {x ∈ F | ¬∃ x′ ∈ F �f(x′) � �f(x)}. (7)

Thus, we say that a vector of decision variables �x∗ ∈ F is
Pareto optimal if there does not exist another �x ∈ F such
that fi(�x) ≤ fi(�x∗) for all i = 1, . . . , k and fj(�x) < fj(�x∗)
for at least one j. In words, this definition says that �x∗ is
Pareto optimal if there exists no feasible vector of decision
variables �x ∈ F which would decrease some criterion with-
out causing a simultaneous increase in at least one other
criterion. Unfortunately, this concept almost always gives
not a single solution, but rather a set of solutions called the
Pareto optimal set. The vectors �x∗ correspoding to the so-
lutions included in the Pareto optimal set are called non-
dominated. The image of the Pareto optimal set under the
objective functions is called Pareto front.

4 Related Work

The main idea of adopting multiobjective optimization con-
cepts to handle constraints is to redefine the single-objective
optimization of f(�x) as a multiobjective optimization prob-
lem in which we will have m + 1 objectives, where m is
the total number of constraints. Then, we can apply any
multiobjective optimization technique [5] to the new vector
v̄ = (f(�x), f1(�x), . . . , fm(�x)), where f1(�x), . . . , fm(�x) are
the original constraints of the problem. An ideal solution �x
would thus have fi(�x)=0 for 1 ≤ i ≤ m and f(�x) ≤ f(�y)
for all feasible �y (assuming minimization).

These are the mechanisms taken from evolutionary mul-
tiobjective optimization that are more frequently incorpo-
rated into constraint-handling techniques:

1. Use of Pareto dominance as a selection criterion.

2. Use of Pareto ranking [6] to assign fitness in such a
way that nondominated individuals (i.e., feasible in-
dividuals in this case) are assigned a higher fitness
value.

3. Split the population in subpopulations that are eval-
uated either with respect to the objective function or
with respect to a single constraint of the problem.

In order to sample the feasible region of the search space
widely enough to reach the global optima it is necessary
to maintain a balance between feasible and infeasible solu-
tions. If this diversity is not reached, the search will focus
only on one area of the feasible region. Thus, it will lead to
a local optima solution.

A multiobjective optimization technique aims to find a
set of trade-off solutions which are considered good in all
the objectives to be optimized. In global nonlinear op-
timization, the main goal is to find the global optimum.
Therefore, some changes must be done to those approaches
in order to adapt them to the new goal. Our main concern
is that feasibility takes precedence, in this case, over non-
dominance. Therefore, good “trade-off” solutions that are
not feasible cannot be considered as good as bad “trade-
off” solutions that are feasible. Furthermore, a mechanism
to maintain diversity must normally be added to any evolu-
tionary multiobjective optimization technique. In our pro-
posal, diversity is kept by using an adaptable grid, and by a
selection process applied to the external file that maintains
a mixture of both good “trade-off” and feasible individuals.

There are several approaches that have been developed
using multiobjective optimization concepts to handle con-
straints, but due to space limitations we will not discuss
them here (see for example [4, 15, 9, 10]).

Evolutionary multiobjective optimization has been ap-
plied to the synthesis of low-power operational amplifiers
[16, 17]. The approach, however, is based on Genetic Algo-
rithms.

5 ISPAES Algorithm

ISPAES (Inverted Shrinkable PAES) [2], uses Pareto domi-
nance as the criterion selection, but unlike the previous work
in the area, a secondary population is used in this case. The
approach, which is a relatively simple extension of PAES
[7] provides, however, very good results, which are highly
competitive with those generated with an approach that rep-
resents the state-of-the-art in constrained evolutionary opti-
mization. The structure of ISPAES algorithm is shown in
Figure 1. Notice the two loops operating over the Pareto
set (in the external storage). The right loop aims for explo-
ration of the search space, the left loop aims for population
diversity and exploitation.

ISPAES has been implemented as an extension of the
Pareto Archived Evolution Strategy (PAES) proposed by
Knowles and Corne [7] for multiobjective optimization.
PAES’s main feature is the use of an adaptive grid on which
objective function space is located using a coordinate sys-
tem. Such a grid is the diversity maintenance mechanism of
PAES and it constitutes the main feature of this algorithm.
The grid is created by bisecting k times the function space
of dimension d (d is the number of objective functions of
the problem. In our case, d is given by the total number
of constraints plus one. In other words, d = n + p + 1,

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

MUTATION

LESS CROWDED AREA
PICK PARENT FROM

<SELECT>

<GETMINMAX>

<TRIM>

<ADJUSTPARAMETERS>

<RELOCATE INDIVIDUALS
ON NEW GRID>

PARETO

SET

CHILD

PARENT?
DOMINATES

Yes

ADD CHILD BY USING
PROCEDURE <TEST>

NEW PARETO SET

INITIAL POPULATION

ISPAES ALGORITHM

No

Figure 1: The logical structure of ISPAES algorithm

where n is the number of inequality constraints, and p is the
number of equality constraints. Note that we add one to this
summation to include the original objective function of the
problem). The control of 2kd grid cells means the alloca-
tion of a large amount of physical memory for even small
problems. For instance, 10 functions and 5 bisections of the
space produce 250 cells. Thus, the first feature introduced
in ISPAES is the “inverted” part of the algorithm that deals
with this space usage problem. ISPAES’s fitness function is
mainly driven by a feasibility criterion. Global information
carried by the individuals surrounding the feasible region
is used to concentrate the search effort on smaller areas as
the evolutionary process takes place. In consequence, the
search space being explored is “shrunk” over time. Even-
tually, upon termination, the size of the search space being
inspected will be very small and will contain the solution
desired (in the case of single-objective problems. For multi-
objective problems, it will contain the feasible region).

The main algorithm of ISPAES is shown in Figure 2. Its
goal is the construction of the Pareto front which is stored
in an external memory (called file). The algorithm performs
Maxnew loops, generating a child h from a random parent c
in every loop. Therefore, the ISPAES algorithm introduced
here is based on a ES(1 + 1). If the child is better than
the parent, that is, the child dominates its parent, then it
is inserted in file, and its position is recorded. A child is
generated by introducing random mutations to the parent,
thus, h = mutate(c) will alter a parent with increments
whose standard deviation is governed by Equation 9.

Most of main and the function test(h,c,file) in ISPAES
are devoted to three things: (1) decide whether a new child
should be inserted in file, and if so, (2) how to make room
for the new member and (3) who becomes the new parent.
Every g new children created, a new parent is randomly
picked from file for this purpose. Also, every r children gen-
erated, the space is shrunk around the current Pareto front

maxsize: max size of Pareto store
maxffeval: fitness function evaluations
Initialize Pareto store with maxsize individuals
While gen≤MaxGen do

Pick µ parents from less crowded area
Run (µ + λ)-ES until maxffeval is met
test(Pareto store, λ children)
test: adds children to Pareto store
shrinkspace(Pareto store): reduce search space

End While

Figure 2: Main algorithm of our ISPAES

if (current < maxsize) then {
add(h);
if (h � c) then c=h }

else if (∃ap∈file | h � ap) then {
remove(ap); add(h)
if (h � c) then c = h; }

Figure 3: Pseudo-code of test(h,c,file) (called by main of
ISPAES)

represented by the individuals of the external memory. Here
we introduce the following notation: x1�x2 means x1 is
located in a less populated region of the grid than x2. The
pseudo-code of this function is depicted in Figure 3.

5.1 Inverted “ownership”

PAES keeps a log of every greed location, whereas ISPAES
keeps a log of the position of every individual. The advan-
tage of this inverted relationship is clear when the optimiza-
tion problem has many functions (more than 10), and/or the
granularity of the grid is fine, for in this case only ISPAES
is able to deal with any number of functions and granularity
level.

5.2 Shrinking the Objective Space

Shrinkspace(file) is the most important function of ISPAES
since its task is the reduction of the search space. The space
is reduced every r number of generations. The pseudo-code
of Shrinkspace(file) is shown in Figure 4.

In the following we describe the four tasks performed by
shrinkspace.

• The function select(file) returns a list whose elements
are the best individuals found in file. The size of
the list is set to 15% of maxsize. Thus, the goal of
select(file) is to create a list with: a) only the best
feasible individuals, b) a combination of feasible and
partially feasible individuals, or c) the “most promis-

xpob: vector containing the smallest value of either xi ∈ X
xpob: vector containing the largest value of either xi ∈ X
select(file);
getMinMax(file, xpob, xpob);
trim(xpob, xpob);
adjustparameters(file);

Figure 4: Pseudo-code of Shrinkspace(file) (called by
main of IS-PAES)

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

m: number of constraints
i: constraint index
maxsize: max size of file
listsize: 50% of maxsize
constraintvalue(x,i): value of individual at constraint i
sortfile(file): sort file by objective function
worst(file,i): worst individual in file for constraint i
validconstraints={1,2,3,...,m};
i=firstin(validconstraints);
While (size(file) > listsize and size(validconstraints) > 0) {

x=worst(file,i)
if (x violates constraint i)

file=delete(file,x)
else validconstraints=removeindex(validconstraints,i)

if (size(validconstraints) > 0) i=nextin(validconstraints)
}
if (size(file) == listsize))

list=file
else

file=sort(file)
list=copy(file,listsize) *pick the best listsize elements*

Figure 5: Pseudo-code of select(file) (called by
shrinkspace)

ing” infeasible individuals. The selection algorithm is
shown in Figure 5. Note that validconstraints (a list
of indexes to the problem constraints) indicates the
order in which constraints are tested. The loop steps
over the constraints removing only one (the worst) in-
dividual for each constraint till there is none to delete
(all feasible), or 15% of file size is reached (in other
words, 85% of the Pareto set will be generated anew
using the best 15% individuals as parents). Also, in
order to keep diversity, a new parent is randomly cho-
sen from the less populated region of the grid after
placing on it g new individuals.

• The function getMinMax(file) takes the list list (last
step in Figure 5) and finds the extreme values of the
decision variables represented by those individuals.
Thus, the vectors xpob and xpob are found.

• Function trim(xpob, xpob) shrinks the feasible space
around the potential solutions enclosed in the hyper-
volume defined by the vectors xpob and xpob. Thus,
the function trim(xpob, xpob) (see Figure 6) deter-
mines the new boundaries for the decision variables.

The value of β is the percentage by which the bound-
ary values of either xi ∈ X must be reduced such
that the resulting hypervolume H is a fraction α of
its previous value. The function trim first finds in the
population the boundary values of each decision vari-
able: xpob,i and xpob,i. Then the new vectors xi and
xi are updated by deltaMini, which is the reduction
in each variable that in the overall reflects a change
in the volume by a factor β. In ISPAES all objective
variables are reduced at the same rate β, therefore, β
can be deduced from α as discussed next. Since we
need the new hypervolume be a fraction α of the pre-
vious one,

Hnew ≥ αHold (8)

n: size of decision vector;
xi: actual upper bound of the ith decision variable
xi

: actual lower bound of the ith decision variable
xpob,i: upper bound of ith decision variable in population
x

pob,i
: lower bound of ith decision variable in population

∀i : i ∈ { 1, . . . , n }
slacki = 0.05 × (xpob,i − x

pob,i
)

width pobi = xpob,i − xpob,i; widtht
i = xt

i − xt
i

deltaMini =
β∗widtht

i
−width pobi
2

deltai = max(slacki, deltaMini);
xt+1

i
= xpob,i + deltai; xt+1

i
= xpob,i − deltai;

if (xt+1
i

> xoriginal,i) then
xt+1

i
− = xt+1

i
− xoriginal,i; xt+1

i
= xoriginal,i;

if (xt+1
i

< xoriginal,i) then xt+1
i

+ = x
original,i

− xt+1
i

;

xt+1
i

= x
original,i

;

if (xt+1 > xoriginal,i) then xt+1
i

= xoriginal,i;

Figure 6: Pseudo-code of trim (called by shrinkspace)

n∏

i=1

(xt+1
i − xt+1

i) = α
n∏

i=1

(xt
i − xt

i)

Either xi is reduced at the same rate β, thus

n∏

i=1

β(xt
i − xt

i) = α
n∏

i=1

(xt
i − xt

i)

βn
n∏

i=1

(xt
i − xt

i) = α
n∏

i

(xt
i − xt

i=1)

βn = α

β = α
1
n

In short, the new search interval of each decision vari-
able xi is adjusted as follows (the complete algorithm
is shown in Figure 4):

widthnew ≥ β × widthold

It should be noted that the value of α has an impor-
tant impact on the performance of ISPAES because it
controls the shrinking speed. In order to determine
a range within which we could set this parameter for
a large variety of problems, we studied the effect of
α on the performance of our algorithm for many test
problems. From analyzing this effect, we found that
in all cases, a range of α between 85% and 97% was
always able to generate the best possible solutions to
each problem. Values smaller than 0.80 make the al-
gorithm prone to converge to local minima. Values of
α too near to 100% slow down convergence, although
they increase the probability of success. In order to
avoid a fine tuning of α dependent of each test func-
tion, we decided to set its value to 0.90, which we
considered as a good compromise based on our anal-
ysis. As we will see later on, this value of α provided
good results in all the problems solved.

Note that also the parameter r (see Figure 2), which
controls the shrinkspace rate, plays an important role
in the algorithm. To set the value of r, we performed a
similar analysis to the one previously described for α.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

In this analysis, we related the behavior of r with that
of α and with the performance of ISPAES. Our results
indicated that a value of r = 2 ∗ maxsize provided
convergence to the optimum in most of the problems
(maxsize is the number of elements allowed to the
Pareto set, stored in the external file). Thus, we used
r = 200, and maxsize = 100 in all the experiments
reported in this paper.

The variable slack is calculated once every new
search interval is determined (usually set to 5% of the
interval). The role of slack is simply to prevent (up
to some extend) against fast decreasing rates of the
search interval.

• The last step of shrinkspace() is a call to adjustpa-
rameters(file). The goal is to re-start the control vari-
able σ through:

σi = (xi − xi)/
√

n i ∈ (1, . . . , n) (9)

This expression is also used during the generation of
the initial population. In that case, the upper and
lower bounds take the initial values of the search
space indicated by the problem. The variation of the
mutation probability follows the exponential behavior
suggested by Bäck [3].

Elitism
A special form of elitism is implemented in IS-PAES to
prevent the lost of the best individual. Elitism is imple-
mented as follows: the best individual of the generation
is marked and only replaced by another one if it is in the
feasible region and with better objective function value.

ISPAES for Optimizing problems in Discrete Search
Space
Simple modifications are required for discrete optimization
problems. The initial value of all objective variables is a
random integer drawn from an uniform distribution, and
bounded by the upper and lower limits staten by the spe-
cific problem.
Mutation of objective variables is performed as follows,

xt+1
i = xt

i + rand(σi)

where σi is the control variable of the corresponding objec-
tive variable, and rand(σi) is a random number with uni-
form distribution in the interval [0, σ].
Control variables σi are mutated as follows,

if(random() < 0.45) then σ = σ + 1; else σ = σ − 1;

this is, with little less probability than the average of 0.5, the
control variables diminish their value by 1.
The reduction of the search space is performed as shown in
Figure 6 for the real space case, except that all results of the
computations must be rounded up to the next integer. The
variable slack is also computed as depicted in Figure 6, it
must also be rounded up, and its smallest possible value is
1.

Input Ramp GA ISPAES
1.0v 2.2963v 2.3711v
2.5v 2.2246v 2.2614v

Table 1: Output voltages of NOT-gate synthesized by IS-
PAES and a GA.

6 Experiments

6.1 The targeted FPTA

The FPTA model used in this paper can be described as a
configurable operational amplifier. Every configuration is
made by setting 77 switches, therefore, there are 277 pos-
sible circuits in the search space. Several input and output
pads are available to feed in and read data back. For the
following experiments we could simply assume there is one
input and a couple of outputs.

6.2 NOT-Gate design

The goal of this experiment is to get two “digital” levels for
an input ramp. The ramp starts at 1.0v, and finishes at 2.5v
We did use a Pareto set of 150 individuals, and 200 gener-
ations. Every 50 generations the members of Pareto set are
recalculated after a “trim” operation. (note: for ISPAES all
constraints and objective function are treated as a minimiza-
tion problem. So, the goal and constraints are restated as a
minimization case)

One objective is declared as follows:

O1 = OutV oltageinput=2.5 − OutV oltageinput=1.0 < 0
(10)

The rationale behind Equation 10 is that the more negative
the greater the swing between output voltages. There are
no more requirements over the outputs, other than the max-
imum swing. Only one constraint is defined to ISPAES; the
goal is to penalize circuits that SPICE finds “impossible” to
evaluate, or for which it generates out of scale voltages (the
reason is also the impossibility of evaluation). Thus, correct
circuits get a constraint value of −1 (feasible solution), and
invalid circuits a constraint value of 10 (infeasible solution).
The output voltages of the NOT gate are shown in Table 1.
Notice that the output voltage swing is about 53% greater
in the circuit found by ISPAES (constrained optimization)
than the GA approach (unconstrained optimization) [1].

6.3 NOT-gate for 4-steps ramp

In preparation for the 2-bit ADC design example, a NOT-
gate is designed here to respond to a input ramp of 4 steps.
The ramp starts at 1.5v with step size of 0.5v The required
responses are the logic voltages for “0-1-0-1”. We did use
a Pareto set of 150 individuals, and 200 generations. Every
50 generations the members of Pareto set are recalculated
after a “trim” operation.

This design problem is restated by using 1 objective
function plus 5 constraints. One of those constraints is used
to penalize impossible circuits, as described in the previ-
ous example. The objective function is also driven by the

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

Input Ramp GA ISPAES
1.5v 2.6571v 1.9601v
2.0v 2.7081v 3.0914v
2.5v 2.6700v 1.9394v
3.0v 2.7198v 3.1650v

Table 2: Output voltages of NOT-gate for 4-steps ramp syn-
thesized by ISPAES and a GA.

maximization of the difference between low and high out-
put levels, as follows.

O1 = OVin=1.5v+OVin=2.5v−OVin=2.0v−OVin=3.0v < 0
(11)

In Equation 11, OV means “output voltage”. Four con-
straints are added to the requirements, the goal is to drive
the output low levels below 2.0v, and the output high levels
above 2.0v, as follows.

C1 = OVin=1.5v − 2.0 < 0 (12)

C2 = OVin=2.5v − 2.0 < 0 (13)

C3 = 2 − OVin=2.0v < 0 (14)

C4 = 2 − OVin=3.0v < 0 (15)

The output voltages for this problem are shown in Ta-
ble 2. Note the difference between voltages found by the
unconstrained (GA) and the constrained evolutionary opti-
mization approach (ISPAES).

6.4 2-bit ADC

The last experiment is the design of a 2-bit ADC. The four
steps input ramp start at 1.5v, step size of 0.5v, so final ramp
value is 3.0v The two output values are named MSB and
LSB (most and least significant bit). We did use a Pareto set
of 150 individuals, and run for 1000 generations. Every 50
generations the members of Pareto set are recalculated after
a “trim” operation.

This problem is restated as a 12 objective problem in the
following way: 2 objectives, 4 constraints on the MSB, 4
constraint on the LSB, 2 constraints for incorrect circuits
(one on each output). The objectives are introduced as
shown in Equations 16 and 17.

OLSB
1 = OV LSB

in=1.5v + OV LSB
in=2.5v

−OV LSB
in=2.0v − OV LSB

in=3.0v < 0 (16)

OMSB
2 = OV MSB

in=1.5v + OV MSB
in=2.5v

−OV MSB
in=2.0v − OV MSB

in=3.0v < 0 (17)

The constraints over voltage levels are similar to those
used in the previous experiment, so for each output we look
for low levels below 2.0v and high levels above 2.0v.

C1 = OV LSB
in=1.5v − 2.0 < 0 (18)

Input Ramp GA-LSB ISPAES-LSB
1.5v 1.9311v 1.9370v
2.0v 1.9512v 2.015v
2.5v 1.9446v 1.3323v
3.0v 2.0813v 3.1183v

Table 3: Output voltages of LSB for 2-bit ADC synthesized
by ISPAES and a GA.

Input Ramp GA-MSB ISPAES-MSB
1.5v 2.1522v 1.6558v
2.0v 2.4962v 1.7497v
2.5v 2.8645v 2.3604v
3.0v 3.2514v 2.6551v

Table 4: Output voltages of MSB for 2-bit ADC synthesized
by ISPAES and a GA.

C2 = OV LSB
in=2.5v − 2.0 < 0 (19)

C3 = 2 − OV LSB
in=2.0v < 0 (20)

C4 = 2 − OV LSB
in=3.0v < 0 (21)

C5 = OV MSB
in=1.5v − 2.0 < 0 (22)

C6 = OV MSB
in=2.0v − 2.0 < 0 (23)

C7 = 2 − OV MSB
in=2.5v < 0 (24)

C8 = 2 − OV MSB
in=3.0v < 0 (25)

As stated before, 2 more constraints were used to penal-
ize “impossible” circuits (in the same way as described in
previous experiments).

Output voltages for LSB and MSB are reported in Ta-
bles 3 and 4. Note that for ISPAES is natural to deal with
design requirements (constraints), for instance, the common
voltage level of 2.0v set for the outputs.

7 Final Remarks and Conclusions

Many circuit design problems are amenable for multiob-
jective optimization since all requirements can be incorpo-
rated into the design process. EAs are proper tools for un-
constrained optimization but, specialized EAs, thus, aug-
mented with a constraint handling technique, are needed to
deal with constrained problems. The easy way to deal with
constraints, for instance, penalization, becomes weaker as a
problem grows. Thus, it is rather interesting and necessary
to redefine the optimality concept in the presence of several
goal and constraints. The ISPAES method just introduced,
proposes a technique to handle constraints based on Pareto
dominance. Even more, the main contribution is an unbi-
ased selection operator that picks feasible and unfeasible
individuals, thus keeping diversity during the evolutionary
process.

The experiments performed are simple but results al-
ready show the advantages of multiobjective optimization
techniques for evolutionary circuit synthesis. The bene-
fits are unquestionable, for instance, the introduction of re-
quired output voltage levels, frequency response, time re-
sponse, power consumption, etc.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

Acknowledgments

The first author acknowledge support from CONACyT
through projects P40721-Y and 42523. The third author ac-
knowledges support from CONACyT through project num-
ber 42435-Y. Thanks to Ibrahim Gokcen for coding some
portions of the system’s interface.

Bibliography

[1] Arturo Hernández Aguirre. Evolutionary Circuit De-
sign on the FPTA-2. Technical Report Contract No.
1230282, Jet Propulsion Laboratory, Pasadena, CA,
July 2001.

[2] Arturo Hernández Aguirre, S. Botello, C. Coello, and
G. Lizárraga. Use of Multiobjective Optimization
Concepts to Handle constraints in Single Objective
Optimization. In Erick Cantú Paz, editor, Genetic
and Evolutionary Computation - GECCO 2003, vol-
ume 1, pages 573–584, Chicago,IL, USA, July 2003.
Springer-Verlag. Lecture Notes in Computer Science
No. 2723.

[3] Thomas Bäck. Evolutionary Algorithms in Theory and
Practice. Oxford University Press, New York, 1996.

[4] Eduardo Camponogara and Sarosh N. Talukdar. A
Genetic Algorithm for Constrained and Multiobjective
Optimization. In Jarmo T. Alander, editor, 3rd Nordic
Workshop on Genetic Algorithms and Their Applica-
tions (3NWGA), pages 49–62, Vaasa, Finland, August
1997. University of Vaasa.

[5] Carlos A. Coello Coello, David A. Van Veldhuizen,
and Gary B. Lamont. Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic
Publishers, New York, May 2002. ISBN 0-3064-6762-
3.

[6] David E. Goldberg. Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1989.

[7] Joshua D. Knowles and David W. Corne. Approx-
imating the Nondominated Front Using the Pareto
Archived Evolution Strategy. Evolutionary Computa-
tion, 8(2):149–172, 2000.

[8] Zbigniew Michalewicz and Marc Schoenauer. Evo-
lutionary Algorithms for Constrained Parameter Op-
timization Problems. Evolutionary Computation,
4(1):1–32, 1996.

[9] I. C. Parmee and G. Purchase. The development of
a directed genetic search technique for heavily con-
strained design spaces. In I. C. Parmee, editor, Adap-
tive Computing in Engineering Design and Control-
’94, pages 97–102, Plymouth, UK, 1994. University
of Plymouth, University of Plymouth.

[10] Tapabrata Ray, Tai Kang, and Seow Kian Chye. An
Evolutionary Algorithm for Constrained Optimiza-
tion. In Darrell Whitley et al., editor, Proceedings
of the Genetic and Evolutionary Computation Confer-
ence (GECCO’2000), pages 771–777, San Francisco,
California, 2000. Morgan Kaufmann.

[11] Jon T. Richardson, Mark R. Palmer, Gunar Liepins,
and Mike Hilliard. Some Guidelines for Genetic Al-
gorithms with Penalty Functions. In J. David Schaffer,
editor, Proceedings of the Third International Confer-
ence on Genetic Algorithms (ICGA-89), pages 191–
197, San Mateo, California, June 1989. George Mason
University, Morgan Kaufmann Publishers.

[12] Alice E. Smith and David W. Coit. Constraint Han-
dling Techniques—Penalty Functions. In Thomas
Bäck, David B. Fogel, and Zbigniew Michalewicz, ed-
itors, Handbook of Evolutionary Computation, chapter
C 5.2. Oxford University Press and Institute of Physics
Publishing, 1997.

[13] Adrian Stoica, R. Zebulum, D. Keymeulen, R. Tawel,
T. Daud, and A. Thakoor. Reconfigurable VLSI Archi-
tectures for Evolvable Hardware: from Experimental
Field Programmable Transistor Arrays to Evolution-
Oriented Chips. IEEE Transactions of VLSI Systems,
Special Issue on Reconfigurable and Adaptive VLSI
Systems, 9(1):227–232, 2001.

[14] Adrian Stoica, R. Zebulum, M.I.Ferguson,
D. Keymeulen, V. Duong, T. Daud, and Xin Guo.
Evolutionary Configuration of Field Programmable
Analog Devices. In Proceedings of the IEEE
AeroSpace Conference. IEEE, IEEE Press, March
2003.

[15] Patrick D. Surry and Nicholas J. Radcliffe. The CO-
MOGA Method: Constrained Optimisation by Multi-
objective Genetic Algorithms. Control and Cybernet-
ics, 26(3):391–412, 1997.

[16] R. S. Zebulum, M. A. Pacheco, and M. Vellasco. A
multi-objective optimisation methodology applied to
the synthesis of low-power operational amplifiers. In
Ivan Jorge Cheuri and Carlos Alberto dos Reis Filho,
editors, Proceedings of the XIII International Confer-
ence in Microelectronics and Packaging, volume 1,
pages 264–271, Curitiba, Brazil, August 1998.

[17] R. S. Zebulum, M. A. Pacheco, and M. Vellasco. Syn-
thesis of CMOS operational amplifiers through Ge-
netic Algorithms. In Proceedings of the Brazilian
Symposium on Integrated Circuits, SBCCI’98, pages
125–128, Rio de Janeiro, Brazil, September 1998.
IEEE.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

	footer1:

